Week 2 - LO4 Stochastic Gradient Descent (Examples)

CS 295 Optimization for Machine Learning Ioannis Panageas

Definition (Risk Minimization). Let $\ell(x,z) : \mathcal{X} \times \mathcal{Z} \to \mathbb{R}$ be a risk function and *D* some unknown distribution we can get samples from. We are interested in solving:

 $\min_{x \in \mathcal{X}} L(x), \text{ where } L(x) := \mathbb{E}_{z \sim D}[\ell(x, z)].$

Definition (Risk Minimization). Let $\ell(x,z) : \mathcal{X} \times \mathcal{Z} \to \mathbb{R}$ be a risk function and *D* some unknown distribution we can get samples from. We are interested in solving:

$$\min_{x \in \mathcal{X}} L(x), \text{ where } L(x) := \mathbb{E}_{z \sim D}[\ell(x, z)].$$

Approach one:

- 1. Take enough (say *n*) samples z_i independently and consider the estimate $\overline{L}(x) \coloneqq \frac{1}{n} \sum_i \ell(x, z_i)$. By Law of Large Numbers this is a close enough with high probability.
- 2. Run a first order optimization algorithm (say GD) on $\overline{L}(x)$.

Remark:

If we do not know the form of $\ell(x, z)$ and we only have oracle access it is not possible. Also many calculations per iteration...

Definition (Risk Minimization). Let $\ell(x,z) : \mathcal{X} \times \mathcal{Z} \to \mathbb{R}$ be a risk function and *D* some unknown distribution we can get samples from. We are interested in solving:

 $\min_{x \in \mathcal{X}} L(x), \text{ where } L(x) := \mathbb{E}_{z \sim D}[\ell(x, z)].$

Approach one:

Or use SGD!

2. Run a first order optimization algorithm (say GD) on $\overline{L}(x)$.

Remark:

If we do not know the form of $\ell(x, z)$ and we only have oracle access it is not possible. Also many calculations per iteration...

Definition (Risk Minimization). Let $\ell(x, z) : \mathcal{X} \times \mathcal{Z} \to \mathbb{R}$ be a risk function and *D* some unknown distribution we can get samples from. We are interested in solving:

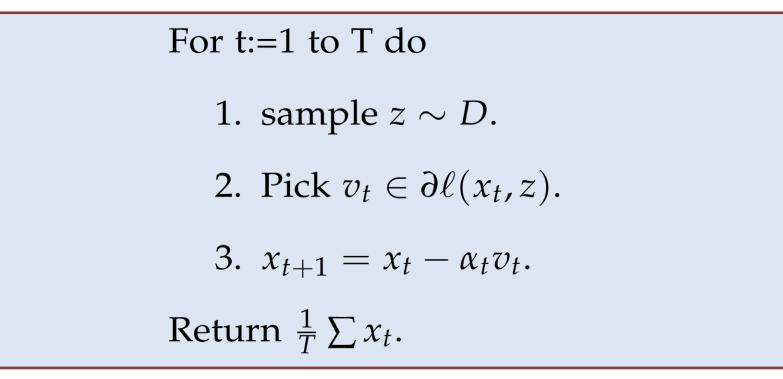
$$\min_{x \in \mathcal{X}} L(x), \text{ where } L(x) := \mathbb{E}_{z \sim D}[\ell(x, z)].$$

Approach two (SGD):

- 1. For each iteration t + 1, take a fresh sample z_t independently from $z_1, ..., z_{t-1}$ and consider the unbiased estimate $\nabla_x \ell(x_t, z_t)$.
- 2. Update $x_{t+1} = x_t \alpha_t \nabla_x \ell(x_t, z_t)$.

Definition (Risk Minimization). Let $\ell(x,z) : \mathcal{X} \times \mathcal{Z} \to \mathbb{R}$ be a risk function and *D* some unknown distribution we can get samples from. We are interested in solving:

 $\min_{x \in \mathcal{X}} L(x), \text{ where } L(x) := \mathbb{E}_{z \sim D}[\ell(x, z)].$



Definition (Risk Minimization). Let $\ell(x,z) : \mathcal{X} \times \mathcal{Z} \to \mathbb{R}$ be a risk function and *D* some unknown distribution we can get samples from. We are interested in solving:

$$\min_{x \in \mathcal{X}} L(x), \text{ where } L(x) := \mathbb{E}_{z \sim D}[\ell(x, z)].$$

Remark:

What if
$$L(x) = \frac{1}{n} \sum_{i=1}^{n} g_i(x)$$
?

Less Cost per iteration (but you need to "pay" the variance):

1. For each iteration t + 1, take uniformly at random independently index *i* from 1, ..., *n* and consider the (unbiased estimate) $\nabla_x g_i(x)$.

2. Update
$$x_{t+1} = x_t - \alpha_t \nabla_x g_i(x)$$
.

Definition (MLE for Gaussian). Let $z \sim \mathcal{N}(\mu, 1)$ and $\ell(x, z) := -\log p_x(z)$ denotes the log-likelihood of $\mathcal{N}(x, 1)$. We do not know μ . We are interested in solving:

 $\min_{x\in\mathbb{R}}\mathbb{E}_{z\sim\mathcal{N}(\mu,1)}[-\log p_x(z)].$

Any guesses what is the minimizer of the above?

Definition (MLE for Gaussian). Let $z \sim \mathcal{N}(\mu, 1)$ and $\ell(x, z) := -\log p_x(z)$ denotes the log-likelihood of $\mathcal{N}(x, 1)$. We do not know μ . We are interested in solving:

 $\min_{x\in\mathbb{R}}\mathbb{E}_{z\sim\mathcal{N}(\mu,1)}[-\log p_x(z)].$

Of course $x^* = \mu$. Remarks on Maximum (log)-Likelihood:

- 1. Standard approach for parameter estimation of parametric families of distributions, i.e., create an optimization problem!
- 2. Under assumptions, Maximum (log) Likelihood Estimator is consistent!

3. Above boils down to
$$\min_{x \in \mathbb{R}} \mathbb{E}_{z \sim \mathcal{N}(\mu, 1)} \left[\frac{(z-x)^2}{2} \right]$$
.

4. Let's do SGD...

Definition (MLE for Gaussian). Let $z \sim \mathcal{N}(\mu, 1)$ and $\ell(x, z) := -\log p_x(z)$ denotes the log-likelihood of $\mathcal{N}(x, 1)$. We do not know μ . We are interested in solving:

$$\min_{x \in \mathbb{R}} \mathbb{E}_{z \sim \mathcal{N}(\mu, 1)} \left[\frac{(z - x)^2}{2} \right]$$

Definition (MLE for Gaussian). Let $z \sim \mathcal{N}(\mu, 1)$ and $\ell(x, z) := -\log p_x(z)$ denotes the log-likelihood of $\mathcal{N}(x, 1)$. We do not know μ . We are interested in solving:

$$\min_{x \in \mathbb{R}} \mathbb{E}_{z \sim \mathcal{N}(\mu, 1)} \left[\frac{(z - x)^2}{2} \right]$$

- The derivative is just (x z) and $\mathbb{E}[(x z)^2] = 1 + (x \mu)^2$.
- The second derivative is 1, hence 1-strongly convex.
- Start from $x_0 = 0$.
- At iteration t+1, get a fresh sample z_t and we have $x_{t+1} = x_t \alpha_t (x_t z_t)$.

Definition (MLE for Gaussian). Let $z \sim \mathcal{N}(\mu, 1)$ and $\ell(x, z) := -\log p_x(z)$ denotes the log-likelihood of $\mathcal{N}(x, 1)$. We do not know μ . We are interested in solving:

$$\min_{x \in \mathbb{R}} \mathbb{E}_{z \sim \mathcal{N}(\mu, 1)} \left[\frac{(z - x)^2}{2} \right]$$

- The derivative is just (x z) and $\mathbb{E}[(x z)^2] = 1 + (x \mu)^2$.
- The second derivative is 1, hence 1-strongly convex.
- Start from $x_0 = 0$.
- At iteration t+1, get a fresh sample z_t and we have $x_{t+1} = x_t \alpha_t (x_t z_t)$.

Choosing $a_t = \frac{1}{t}$ (check SGD thm), what is x_T ?

Definition (MLE for Gaussian). Let $z \sim \mathcal{N}(\mu, 1)$ and $\ell(x, z) := -\log p_x(z)$ denotes the log-likelihood of $\mathcal{N}(x, 1)$. We do not know μ . We are interested in solving:

$$\min_{x \in \mathbb{R}} \mathbb{E}_{z \sim \mathcal{N}(\mu, 1)} \left[\frac{(z - x)^2}{2} \right]$$

- The derivative is just (x z) and $\mathbb{E}[(x z)^2] = 1 + (x \mu)^2$.
- The second derivative is 1, hence 1-strongly convex.
- Start from $x_0 = 0$.
- At iteration t+1, get a fresh sample z_t and we have $x_{t+1} = x_t \alpha_t (x_t z_t)$.

Choosing $a_t = \frac{1}{t}$ (check SGD thm), what is x_T ?

Recall for
$$T = \Theta\left(\frac{1}{\epsilon}\log\frac{1}{\epsilon}\right)$$
 we get error ϵ

Definition (MLE for Gaussian). Let $z \sim \mathcal{N}(\mu, 1)$ and $\ell(x, z) := -\log p_x(z)$ denotes the log-likelihood of $\mathcal{N}(x, 1)$. We do not know μ . We are interested in solving:

$$\min_{x \in \mathbb{R}} \mathbb{E}_{z \sim \mathcal{N}(\mu, 1)} \left[\frac{(z - x)^2}{2} \right]$$

- The derivative is just (x z) and E[(x z)²] = 1 + (x μ)².
 The You can get ε-close to μ after ¹/_{ε²} ln ¹/_{ε²} itearations! Not tight, why?
 Start nom x₀ = 0.
- At iteration t+1, get a fresh sample z_t and we have $x_{t+1} = x_t \alpha_t (x_t z_t)$.

It is the empirical mean, i.e., $x_T = \frac{1}{T} \sum_i z_i$!

Problem (Bias of a coin). Assume you are given a coin that gives H with probability $p \in (0,1)$ and T with probability 1 - p. How many tosses do you need to get an estimate \tilde{p} about p and be sure with probability 99% that $|p - \tilde{p}| \le \epsilon$?

Hint: Density $f_p(z) = p^z (1-p)^{1-z}$

Problem (Bias of a coin). Assume you are given a coin that gives H with probability $p \in (0,1)$ and T with probability 1 - p. How many tosses do you need to get an estimate \tilde{p} about p and be sure with probability 99% that $|p - \tilde{p}| \leq \epsilon$?

Hint: Density $f_p(z) = p^z (1-p)^{1-z}$

- A discrete probabilist will use Chernoff bounds or Chebyshev!
- A statistician/optimization guy will solve $\min_x \mathbb{E}[-\log f_x(z)]$.

Problem (Bias of a coin). Assume you are given a coin that gives H with probability $p \in (0,1)$ and T with probability 1 - p. How many tosses do you need to get an estimate \tilde{p} about p and be sure with probability 99% that $|p - \tilde{p}| \le \epsilon$?

Hint: Density $f_p(z) = p^z (1-p)^{1-z}$

- A discrete probabilist will use Chernoff bounds or Chebyshev!
- A statistician/optimization guy will solve $\min_x \mathbb{E}[-\log f_x(z)]$.

We would like to solve (of course $x^* = p$ is the solution but we don't know p)

$$\min_{x} \mathbb{E}[-z \log x - (1-z) \log(1-x)].$$

Problem (Bias of a coin). Assume you are given a coin that gives H with probability $p \in (0,1)$ and T with probability 1 - p. How many tosses do you need to get an estimate \tilde{p} about p and be sure with probability 99% that $|p - \tilde{p}| \le \epsilon$?

Hint: Density $f_p(z) = p^z (1-p)^{1-z}$

- The derivative of ℓ is just $-\frac{z}{x} + \frac{(1-z)}{1-x} = \frac{x-z}{x(1-x)}$, which is in absolute value at most $\frac{1}{\epsilon}$ for $x \in (\epsilon, 1-\epsilon)$.
- The second derivative of L is $\frac{p}{x^2} + \frac{1-p}{(1-x)^2}$, hence $4(p-p^2)$ -strongly convex in (0,1).
- Start from $x_0 = 1/2$.
- At iteration t+1, get a fresh sample z_t and we have $x_{t+1} = x_t \alpha_t \frac{(x_t z_t)}{x_t(1 x_t)}$.

Problem (Bias of a coin). Assume you are given a coin that gives H with probability $p \in (0,1)$ and T with probability 1 - p. How many tosses do you need to get an estimate \tilde{p} about p and be sure with probability 99% that $|p - \tilde{p}| \le \epsilon$?

Hint: Density $f_p(z) = p^z (1-p)^{1-z}$

- The derivative of l is just z + (1-z) = x-z, which is in absolute value. You can get ε-close to p after 1/(4(p-p²)ε⁶) ln 1/ε² itearations! Not tight, why?
 The second derivative of L is x² + (1-x)², hence 4(p - p²)-strongly convex in (0, 1).
- Start from $x_0 = 1/2$.
- At iteration t+1, get a fresh sample z_t and we have $x_{t+1} = x_t \alpha_t \frac{(x_t z_t)}{x_t(1 x_t)}$.

A strange example.

Problem (Mixture of Gaussians). Assume you have access to i.i.d samples from $z \sim \mathcal{N}(\mu, 1)$. However, there is an adversary that with probability 1/2 corrupts z and gives you -z. Can you infer/estimate μ ?

A strange example.

Problem (Mixture of Gaussians). Assume you have access to i.i.d samples from $z \sim \mathcal{N}(\mu, 1)$. However, there is an adversary that with probability 1/2 corrupts z and gives you -z. Can you infer/estimate μ ?

Need to solve:
$$\min_{x \in \mathbb{R}} \mathbb{E}_{z \sim \mathcal{N}(\mu, 1)} \left[-\log \left(\frac{1}{2\sqrt{2\pi}} e^{(z-x)^2/2} + \frac{1}{2\sqrt{2\pi}} e^{(z+x)^2/2} \right) \right]$$

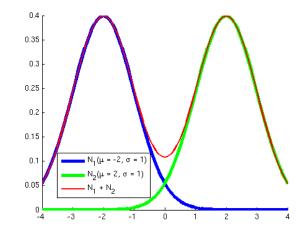
• Is it convex? **Exercise 5.**

A strange example.

Problem (Mixture of Gaussians). Assume you have access to i.i.d samples from $z \sim \mathcal{N}(\mu, 1)$. However, there is an adversary that with probability 1/2 corrupts z and gives you -z. Can you infer/estimate μ ?

Need to solve:
$$\min_{x \in \mathbb{R}} \mathbb{E}_{z \sim \mathcal{N}(\mu, 1)} \left[-\log \left(\frac{1}{2\sqrt{2\pi}} e^{(z-x)^2/2} + \frac{1}{2\sqrt{2\pi}} e^{(z+x)^2/2} \right) \right]$$

• Is it convex? **Exercise 5.**



Conclusion

• Examples on SGD:

– MLE, testing bias of coin.

• Non-convex examples: Mixture of Gaussians

 Next week we will talk about online learning/optimization!